Today I spent all of my study time investigating the parabola problem from last week. There are still details to be worked out, but I’m fairly sure the approach I’m using will allow me to prove that the angles I conjectured might be equal actually are. I thought today I’d give a better explanation of what my conjecture was.
A well known principle in physics, called the Law of Reflection, is that when light reflects from a flat surface, the angle of incidence (that is, the angle at which the light hits the surface) is equal to the angle of reflection (that is, the angle at which the reflected light leaves the surface). This is shown in the diagram below.

A well known property of parabolas is that, if light is emitted from the focus of the parabola ($F$ in the diagram below), then it will reflect from the surface of the parabola in a direction parallel to the parabola’s orientation (vertical, in the diagram). This is why parabolic mirrors are used in car headlights to reflect all light outward from a bulb at the focus.1

My question is basically how this property of parabolas relates to the Law of Reflection. It is not obvious how one would measure the angle at which light hits or reflects from a curved surface. What would that mean? One possibility is to measure the angle between the path of the light and the line tangent to the curve at the point of reflection. (In the diagram, the point of reflection is called $P$ and the blue line is tangent to the parabola at $P$.2)
My conjecture is that the a generalization of the Law of Reflection holds true for light emitted from the focus of the parabola and reflected at $P$, if one interprets the angles of incidence and reflection as the angles formed with the line tangent to the parabola at $P$. That is, I conjectured that the angle between the blue tangent line in the diagram and the vertical line through point $P$ is the same as the angle between the blue tangent line and the segment $\overline{PF}$.
- Moving in the other direction, if light hits the surface of the parabola from a direction parallel to the parabola’s orientation, it will reflect along a line that passes through the focus of the parabola. This is why parabolic mirrors are used in power generation to concentrate all incoming light on a collector a the focus. ↩︎
- The line tangent to a parabola at a point intersects the parabola at that point and no other, and its slope is sometimes described as the slope of the parabola at that point. ↩︎
Your observation just under the top drawing is why, in H. G. Wells’ “The War of the Worlds,” the Martians used very intense heat sources at the foci of parabolas to produce powerful heat beams in their attack on the earth. Current Martians, of course, use lasers, but these were unknown on both our planets when the invasion was launched.
Heh.