Before and After

Today was devoted to fun with geometry (as was some time late last night). I came up with a simpler proof of the proposition about the inscribed equilateral triangle, which I’m pleased about; the first one was a bit gnarly. I also worked on the lemmas to accompany it. It needs most of the same ones, but not the one about parallelograms.

Here are before and after shots showing the working figure for my first proof and that for my second. One proof required four new lines and two new named points. The other involved just one one of each.

Before 1
After 1

(I’m looking forward to finishing this notebook so that I can move to an unruled one.)

Groundwork

I spent quite a bit of time today working on the inscribed equilateral triangle problem. I experimented both by hand and using the Desmos geometry tool, which allows you to vary parameters in your drawings. At this point, I’ve come up with a proof that convinces me. There is one step that needs to be formalized and a couple that depend on facts that I know to be true but would like to prove. These include that the sides of a parallelogram are pairwise equal1 and that a triangle is equilateral if and only if all of its angles are equal. The argument also depends heavily on a fact I just learned today, conjecturing it based on experimentation and then confirming it with a Google search: inscribed angles subtended by the same arc of a circle are equal (as shown below). I’m not sure whether I will be able to prove that or not. My education in geometry focused almost exclusively on lines and triangles, and I know little of circle geometry.

Two Subtended Angles

(As readers may have guessed, I’m feeling much better today.)

  1. To do. ↩︎

Triangle, Triangle

Today I worked for as long as I could on the proposition from yesterday about the inscribed equilateral triangle. I’m feeling a little better, but my mind is still sluggish, so I didn’t make much progress.

I’m wondering whether proving the proposition for a special case first would be helpful. The edge cases where $D$ is the same point as $A$ or $C$ are trivial. The case where $AD = CD$ might provide some insight. On the other hand, using any of the unique characteristics of that case to prove it could leave me as far from a general proof as before.

Inscribed Equilateral Triangle

Ptolemy’s Theorem and Others

Things continued difficult today, but I felt a bit better after dinner. I watched four videos from the Numberphile channel, notably one about proving a geometric relationship called Ptolemy’s Theorem by a technique called inversion of the plane. It was a great video, but quite involved. I would not recommend it to those without a strong interest in math.

When I am feeling better, I would like to have a go at proving Ptolemy’s Theorem by another method.1 The lecturer in the video said that it can be done using plane geometry, provided you are clever, and can also be done by crunching trig ratios, something I have some experience in. I’d also like to prove, by some other method, a fact that can be proven using Ptolemy’s Theorem: that in the figure shown below, the distance from $D$ to $B$ is the sum of the distances from $D$ to $A$ and $C$.

Inscribed Equilateral Triangle

A cool thing about Ptolemy’s Theorem is that the Pythagorean Theorem falls right out of it. In fact, you could say that the Pythagorean Theorem is a special case of Ptolemy’s. This means that Ptolemy’s Theorem must only be true if you assume the Parallel Postulate. I wonder if that is the case for the proposition above.

  1. To do. ↩︎

Shapes on a Plane

Today I watched three videos about tilings, specifically non-periodic tilings. These are arrangements of tiles that cover an infinite plane in a pattern that never repeats.

Two of the videos were quite accessible. The first was from the popular science channel Veritasium1 and covered the state of this subject three years ago:

The second was from a smaller channel called Up and Atom and explained recent developments that have caused excitement among math enthusiasts.

The third video was more technical and probably of less interest to nonspecialist readers. It included a little more detail about why some collections of shapes form non-periodic tilings.

I’m still very tired from yesterday and don’t have much bright to say about all this. I feel like there is something to understand, though, about the relationship between rotational symmetry and periodicity of tilings. That is, between the ability of a tile pattern to match its original configuration when rotated versus when translated.

  1. Note that Veritasium has sometimes shaped its educational content to reflect well on its sponsors. ↩︎

Parabola-a-Go-Go, Part 4

Today I watched more of 3Blue1Brown’s Lockdown Math series. (See the new Resources tab for a link.) It turns out that the subseries I was following has four installments, not three, so I may be spending another day on it. I’ve enjoyed the primer on complex numbers 3Blue1Brown provides. Although they cropped up occasionally in my mathematical education, I never learned about them in any depth. I had certainly never understood their connection to trigonometry before.

Now it is time for the proofs of the two remaining cases of the proposition that is the focus of the Parabola-a-Go-Go series. (You will find links to the rest of the series under the new Highlights tab.)


Proposition: Consider the parabola $x^2=4py$, where $0<p$. Let $a$ be a real number. Let $A$ be the vertical line $x=a$. Let $B$ be the line through $F=(0, p)$, the focus of the parabola, and $R=(a,\frac{a^2}{4p})$, the point where $A$ intersects the parabola. Let $C$ be the line tangent to the parabola at $R$. Then, for all $a$, the acute or right angle formed by $A$ and $C$ is equal to the acute or right angle formed by $B$ and $C$.

As noted in Parabola-a-Go-Go, Part 2, the equation of the parabola can be written as $y=\frac{1}{4p}x^2$ and, using calculus, $y’=(\frac{1}{4p})2x=\frac{1}{2p}x$.

Thus, the slope of $C$, the line tangent to the parabola at $R=(a,\frac{a^2}{4p})$, is $\frac{a}{2p}$.

Furthermore, the slope of $B$, the line through $F=(0, p)$ and $R=(a,\frac{a^2}{4p})$ is $$\frac{\frac{a^2}{4p}-p}{a-0}=\frac{a}{4p}-\frac{p}{a}=\frac{a^2-4p^2}{4ap}\text{.}$$


Now suppose that $a>2p$.

In that case, the slopes of $B$ and $C$ are both positive. Note that the slope of $C$ is greater than the slope of $B$, since $\frac{a}{2p}=\frac{2a^2}{4ap}$ and $2a^2>a^2-4p^2$. It follows that the lines intersect one another, line $A$, and the x-axis as shown in the diagram below.

A Greater Than 2p Annotated 1

In this diagram, $\alpha$ is the angle formed by $A$ and $C$ and $\beta$ is the angle formed by $B$ and $C$.

Consider the right triangle formed by $A$, $C$, and the x-axis. Note that one of its vertecies is vertical to $\alpha$. Note also that the ratio of its vertical leg to its horizontal leg is equal to the slope of $C$. It follows that the ratio of its horizontal leg to its vertical leg is the reciprocal of the slope of $C$. Yet that ratio is also the tangent of the angle that is vertical to $\alpha$.

Therefore, $$\alpha = \arctan\frac{2p}{a}\text{.}$$

Consider instead the right triangle formed by $A$, $B$, and the x-axis. By similar reasoning we see that the tangent of $\beta+\alpha$ is the reciprocal of the slope of $B$.

Thus, $$\beta+\alpha=\arctan\frac{4ap}{a^2-4p^2}$$$$\beta=\arctan\frac{4ap}{a^2-4p^2}-\alpha=\arctan\frac{4ap}{a^2-4p^2}-\arctan\frac{2p}{a}\text{.}$$

Since $a>2p$, $(\frac{2p}{a})^2<1$. Therefore, by the lemma from Parabola-a-Go-Go, Part 3, $$2\arctan\frac{2p}{a}=\arctan\frac{2(\frac{2p}{a})}{1-(\frac{2p}{a})^2}=\arctan\frac{\frac{4p}{a}}{1-\frac{4p^2}{a^2}}=\arctan\frac{\frac{4ap}{a^2}}{\frac{a^2-4p^2}{a^2}}=\arctan\frac{4ap}{a^2-4p^2}\text{.}$$

It follows that $\arctan\frac{2p}{a}=\arctan\frac{4ap}{a^2-4p^2}-\arctan\frac{2p}{a}$ and thence that $\alpha=\beta$.

Thus the proposition holds when $a>2p$.


Suppose instead that $0<a<2p$.

In that case, the slope of $B$ is negative and the slope of $C$ is positive. It follows that the lines intersect one another, line $A$, and the x-axis as shown in the diagram below.

A Less Than 2p Annotated 2

In this diagram, $\alpha$ is the angle formed by $A$ and $C$ and $\beta$ is the angle formed by $B$ and $C$. An additional angle is labeled $\gamma$ and has the property that $\alpha+\beta+\gamma=\pi$.

Considering the two right triangles formed by the lines $A$, $B$, and $C$ with the x-axis, we see that the tangent of $\alpha$ is the reciprocal of the slope of $C$ and the tangent of $\gamma$ is the absolute value of the reciprocal of the slope of $B$.

Thus, $\alpha = \arctan\frac{2p}{a}$ and $\gamma=\arctan\left|\frac{4ap}{a^2-4p^2}\right|$.

Since the $0<a<2p$, $\frac{4ap}{a^2-4p^2}$ is negative. Thus $\left|\frac{4ap}{a^2-4p^2}\right|=\frac{-4ap}{a^2-4p^2}$.

It is a property of arctangent that $\arctan (-x)=-\arctan x$. (I forgot to write up a proof of this, but the proof is simple. “Left to the reader as an exercise.”) Thus $$\gamma=\arctan\left|\frac{4ap}{a^2-4p^2}\right|=\arctan\frac{-4ap}{a^2-4p^2}=-\arctan\frac{4ap}{a^2-4p^2}\text{.}$$

It follows that $$\beta =\pi – \arctan\frac{2p}{a} -\left(-\arctan\frac{4ap}{a^2-4p^2}\right)=\pi – \arctan\frac{2p}{a} +\arctan\frac{4ap}{a^2-4p^2}\text{.}$$

Since $0<a<2p$, $(\frac{2p}{a})^2>1$. Thus, by the lemma, $$2\arctan\frac{2p}{a}=\pi+\arctan\frac{2(\frac{2p}{a})}{1-(\frac{2p}{a})^2}=\pi+\arctan\frac{4ap}{a^2-4p^2}\text{.}$$

It follows that $\arctan\frac{2p}{a}=\pi-\arctan\frac{2p}{a}+\arctan\frac{4ap}{a^2-4p^2}$ and thence that $\alpha=\beta$.

Therefore the proposition holds for $0<a<2p$ and holds in general.


This gnarly argument was fun to work out, and I got to practice all the things I’ve been reviewing: algebra, analytic geometry, conics, and trig, plus some basic geometry. That said, if you want to see a really good proof of this theorem, check out this page. I looked this up sometime after I finished my own proof, and I’ll admit I was a little discouraged to find there was a way to do the problem that was so much better. (And this definitely is. It uses the definition of the object involved directly, requires less advanced concepts, and doesn’t rely on cases.) Not everyone can be optimally clever all the time, though—one is lucky if one can be optimally clever any of the time—and, as I said, doing it my way was fun and educational. I’m not sure whether either approach can be adapted to ellipses. That is a project for the future.

For those wondering, the diagrams for the Parabola-a-Go-Go series are based on images from the graphing program Desmos. I added additional details in GIMP and, in some cases, annotated the results by hand using a stylus and the photo app of my tablet. Most of my diagrams (the ones with the cream quad-ruled backgrounds) are made on my tablet using the stylus and a freehand note-taking app.

I know this series of posts was not very accessible. I want to explain more of what I do in a way non-specialists can understand; that’s a task that has always appealed to me. After doing my study each day, though, I only have so much energy and time left for the blog, and it tends to be more efficient to write at a higher level. Perhaps some of the competition problems I hope to try will have fairly short solutions that lend themselves to more complete explanations.

Parabola-a-Go-Go, Part 2

Today has been a very busy day—I think I did every errand known to man—and I haven’t fit in any study time yet. I give my readers my solemn word to at least read some of The Joy of X before bed, however.

Today I am proving the proposition below for the case $a=2p$. The case $a=0$ was dealt with yesterday, and the cases $0<a<2p$ and $a>2p$ will be addressed tomorrow or later in the week.

Proposition: Consider the parabola $x^2=4py$, where $0<p$. Let $a$ be a real number. Let $A$ be the vertical line $x=a$. Let $B$ be the line through $F=(0, p)$, the focus of the parabola, and $R=(a,\frac{a^2}{4p})$, the point where $A$ intersects the parabola. Let $C$ be the line tangent to the parabola at $R$. Then, for all $a$, the acute or right angle formed by $A$ and $C$ is equal to the acute or right angle formed by $B$ and $C$.

First, note that the equation of the parabola can be written as $y=\frac{1}{4p}x^2$.

Now suppose $a=2p$.

Then, $R$ is the point $(2p, p)$, and $B$ is the horizontal line $y=p$.

Using calculus, $y’=(\frac{1}{4p})2x=\frac{1}{2p}x$. Thus, the slope of $C$, the line tangent to the parabola at $R=(2p, p)$, is $(\frac{1}{2p})(2p)=1$.

It follows that $C$ intersects $A$, $B$, and the x-axis as show in the diagram below.

A Equals 2p Annotated 1

In this diagram, $\alpha$ is the angle formed by $A$ and $C$ and $\beta$ is the angle formed by $B$ and $C$.

Note that $\alpha$ is equal to the angle that is vertical to $\alpha$.

Since $B$ is horizontal, it is parallel to the x-axis. Thus, $\beta$ is equal to the alternate interior angle to $\beta$ that is formed by $C$ and the x-axis.

Because $A$ is perpendicular to the x-axis, the triangle formed by $A$, $C$, and the x-axis is a right triangle. Hence the ratio of the legs must be equal to the slope of $C$, which is 1. It follows that the legs are equal.

Thus, the angle vertical to $\alpha$ and the alternate interior angle to $\beta$ are also equal, because they subtend the equal sides of an isosceles triangle.

Therefore, $\alpha=\beta$ and the proposition holds when $a=2p$.

(Fun!)

Parabola-a-Go-Go, Part 1

Today I will begin sharing the results of my investigation into reflections in parabolas. For a refresher on the problem, see my post Parabolic Reflections.

First of all, I have chosen to investigate only upward-facing parabolas with their verticies at the origin. If the conjecture is true for those parabolas, then it is true for parabolas in general, because the lines involved in the problem will form the same angles if translated, rotated, or reflected.

Proposition: Consider the parabola $x^2=4py$, where $0<p$. Let $a$ be a real number. Let $A$ be the vertical line $x=a$. Let $B$ be the line through $F=(0, p)$, the focus of the parabola, and $R=(a,\frac{a^2}{4p})$, the point where $A$ intersects the parabola. Let $C$ be the line tangent to the parabola at $R$. Then, for all $a$, the acute or right angle formed by $A$ and $C$ is equal to the acute or right angle formed by $B$ and $C$.

The relationships can bee seen in the figure below.

A Equals 2p

I found it necessary to split my proof into cases, depending on the value of $a$. The figure above represents the case $a=2p$. In that case, the slope of $B$ is zero. The other relevant cases are $a>2p$, where the slope of $B$ is positive, $0<a<2p$, where the slope of $B$ is negative, and $a=0$, where the slope of $B$ is undefined. The last of these cases is pictured below. As you can see, the proposition is trivially true when $a=0$ because $A$ and $B$ are the same line.

A Equals 0

I will not discuss the cases where $a<0$. Because a parabola is symmetrical, it is sufficient to prove that the proposition holds for one half of it. (I did, in fact, consider those cases. I initially did the proof for the left side of the parabola instead of the right side. The math for the right side is slightly simpler, though, so that is what I will be presenting here.)

Tune in tomorrow for the proof for the case $a=2p$. It’s quite simple if you know that the slope of the line tangent to the parabola at $x$ is $\frac{x}{2p}$. Readers might enjoy seeing if they can work it out for themselves.