Happy International Pi Approximation Day, readers!
Today I did the review exercises that I chose on Saturday and decided to forgo the challenge problems that follow them. This means that I have finally finished the first chapter of my textbook and, with it, the groundwork phase of my review project. I am now ready to start chapter two, which covers the actual calculus topics of limits and derivatives.
Over the weekend, I felt pretty discouraged that it has taken me more than four months to get through this chapter. (I started it on the other Pi Day, in fact.) Today I mostly feel pleased to have done it, though. We’ll see about tomorrow.
I don’t know if there is any good way to pick up the pace. There are a lot of days when my mind simply does not work well, and I have very little control over that. I could perhaps do fewer exercises, but I want to relearn the material thoroughly. As I’ve said before, my ultimate goal is to do some online tutoring, which requires laying out the steps to solve tricky problems quickly and in one’s head. (I do wonder how many days in a month I’m actually going to be able to do that, given my experience working on this review. Not none, hopefully.)
One of the exercises I did today concerned finding parametric equations for a curve called the Cissoid of Dioclese. It is traced by the point $P$ in the diagram below as $\theta$ varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. ($P$ is the point on $\overline{OB}$ such that $OP$ is equal to $AB$.)

I was able to do this problem using the fact that a central angle has twice the measure of an inscribed angle subtended by the same arc, which is to say, that the measure of $\angle ADC$, below, is $2\theta$. (I proved this in the post Angles and Arcs.)

The way the diagram was drawn, however, suggests that mine wasn’t the author’s expected solution. Anyone have an idea about how to find expressions in terms of $\theta$ for the $x$ and $y$ coordinates of $P$ without using $\angle ADC$?
The cissoid looks like this (with the point $P$ renamed to $M$):
