Today I read the section of my calculus textbook about continuity, looked up a couple of related proofs in Analysis with an Introduction to Proof, and experimented with a variation on the problem I shared yesterday.

In a comment on yesterday’s post, reader Tim McL asked what would happen if circle $C_2$ in the diagram above were fixed and the radius of $C_1$ were allowed to increase toward infinity. (See this interactive model on Desmos.) How would this affect $R$? And if it caused the $x$-coordinate of $R$ to grow without bound, as seemed likely, why would our intuition be correct in this scenario but not in the one described in the original problem?
I’m not sure I’ve answered the second of those questions, but I did establish that in the scenario Tim McL described, $R=(\sqrt{4t^2-r^2}+2t,0)$, where $t$ is the radius of $C_1$ and $r$ is the (fixed) radius of $C_2$. Notice that the $x$-coordinate does become arbitrarily large as $t$ increases. Notice also, though, that it becomes closer and closer to $4t$. In the original problem, $R$ approached $(4,0)$ and $t$ was equal to $1$. Thus, I think we are seeing the same behavior in both scenarios, with the $x$-coordinate of $R$ dependent on the radii of both circles, and approaching $4t$ as they diverge. It only grows without bound when one of them increases toward infinity, however.
“Thus, I think we are seeing the same behavior in both scenarios, with the $x$-coordinate of $R$ dependent on the radii of both circles, and approaching $4t$ as they diverge. It only grows without bound when one of them increases toward infinity, however.”
An elegant insight, IMHO.
Maybe you want to say, “approaching $4t$ as $t/r\to\infty$. If $r$ and $t$ diverge because $r$ gets big, then eventually the $x$-coordinate of $R$ becomes imaginary, whatever that means.
Yes, that would be a better way of putting it.