More Notebook Archeology

I hoped I might finish the exercises from the review of conics today, but I am still feeling under the weather, so I didn’t push that. Instead I read some of The Joy of X by Steven Strogatz and poked around in the same old notebook where I unearthed the problem about superprimes. There I found a nifty, non-inductive proof that $\sum_{i=0}^{n-1}x^i=\frac{x^n-1}{x-1}$, which is a theorem from the first chapter of Number Theory by George E. Andrews, where it is proven by induction.

I also found two unproven propositions about digit sums and the question, “What is the pattern of the sums of digits for multiples of 9?” I worked a bit on the latter, but couldn’t make much of the results. That led me to look them up in the On-Line Encyclopedia of Integer Sequences, a resource I’d heard of but never before used. The sequence I was working with didn’t prove to have any very interesting properties, but I found some others I want to look into further, such as the binary weight of $n$ and the sequence $n$ minus the sum of the digits of $n$, the terms of which are always multiples of 9.1 (Whoa.) I’ll have to be careful, though. The OEIS looks worse than Wikipedia or even TV Tropes for trapping in the unwary browser.

  1. To do. ↩︎

One Reply to “More Notebook Archeology”

Leave a Reply to Kim J Cancel reply

Your email address will not be published. Required fields are marked *